Detecting Signals at the Single Molecule Level: Pioneering Achievements in Microscopy

Fluorescence lifetime imaging microscopy (FLIM) is an established tool for a variety of applications in biology and biomedical research. However, recent advances have led to such remarkable improvements in its capacity for contrast and sensitivity that researchers can now employ it to detect signals at the single molecule level. FLIM also offers the additional benefit of independence from fluorophore concentration and excitation intensity. Moreover, its unique sensitivity makes it an excellent reporter of conformational changes and of variations in the molecular surroundings of biological molecules.

Most of this improvement and discovery has occurred during the past decade and to date, information that would benefit a broad range of researchers remains scattered in the literature. Edited by two of the top pioneers in the field, FLIM Microscopy in Biology and Medicine presents the fundamentals of FLIM along with a number of advanced considerations so that a wider audience can appreciate recent and potential improvements that make it such a valuable tool.

In addition to reviewing the latest developments, applications, and approaches to data analysis, the book also takes measure of the current state of the field, presenting the pros and cons of different methods and suggesting where improvements are required. The book also describes ancillary techniques related to the direct determination of lifetimes, including imaging fluorescence anisotropy for the study of molecular rotations.

New Opportunities for Biomedical Researchers...New Challenges for Microscopy Researchers

Discussion sections in all the chapters clearly show the challenges for implementing FLIM for various applications. Certain chapters discuss limits on the number of photons required for highly accurate lifetime determinations as well as the accuracy with which multiple, closely associated lifetime components can reliably be determined. Such considerations are important for users when selecting the most advantageous method of FLIM to use for a particular application.

While this book provides an introduction for those new to FLIM, it gathers a wealth of material to enhance the work of experts involved with pioneering technological improvements or research opportunities in this unique and promising area of microscopy.
Table of Contents

INTRODUCTION, MICROSCOPY, FLUOROPHORES

Fluorescence Lifetime Resolved Imaging—What, Why, How: A Prologue, Robert M. Clegg, University of Illinois at Urbana Champaign

Visible Fluorescent Proteins for FRET-FLIM, Richard N. Day, Indiana University School of Medicine

INSTRUMENTATION

Wide-field Fluorescence Lifetime Imaging Microscopy using a Gated Image Intensifier Camera, Yuansheng Sun, James N. Demas, and Ammasi Periasamy, University of Virginia

Frequency-Domain FLIM, Bryan Q. Spring and Robert M. Clegg, University of Illinois at Urbana Champaign

Laser Scanning Confocal FLIM Microscopy, Hans Gerritsen, Arjen Bader, and Sasha Agronskaia, University of Utrecht, Netherlands

Multiphoton Fluorescence Lifetime Imaging at the Dawn of Clinical Application, Karsten König and Aisada Uchugonova, Saarland University, Germany

FLIM Microscopy with Streak Camera, V. Krishnan Ramanujan, Javier A. Jo, Ravi Ranjan and Brian A. Herman, Cedars-Sinai Medical Center, LA, and University of Texas at San Antonio

Spectrally Resolved Fluorescence Lifetime Imaging Microscopy: SLIM/mwFLIM, Christoph Biskup, Frank Dolp, Birgit Hoffmann, Klaus Benndorf, and Angelika Rück, Universitätsklinikum Jena and University of Ulm, Germany

Time Resolved Fluorescence Anisotropy, Steven S. Vogel, Christopher Thaler, Paul S. Blank, and Srinagesh V. Koushik, National Institutes of Health

DATA ANALYSIS

General Concerns of FLIM Data Representation and Analysis and Frequency Domain Model-Free Analysis, Yi-Chun Chen, Bryan Q. Spring, Chittanon Buranachai, Bianca Tong, George Malachowski, and Robert M. Clegg, University of Illinois at Urbana Champaign

Non-linear Curve Fitting Methods for Time-Resolved Data Analysis, Ignacy Gryczynski, Rafal Luchowski, Shashank Bhatrill, Julian Borejdo, and Zygmunt Gryczynski, University of North Texas Health Sciences Center

Global Analysis of Frequency Domain FLIM Data, Hernan E. Grecco and Peter J. Verveer, Max Planck Institute of Molecular Physiology, Germany

APPLICATIONS

FLIM Applications in the Biomedical Sciences, Ammasi Periasamy, University of Virginia, and Robert Clegg, University of Illinois-Urbana Champaign